Ex Situ Integration of Multifunctional Porous Polymer Monoliths into Thermoplastic Microfluidic Chips.
نویسندگان
چکیده
A unique method for incorporating functional porous polymer monolith elements into thermoplastic microfluidic chips is described. Monolith elements are formed in a microfabricated mold, rather than within the microchannels, and chemically functionalized off chip before insertion into solvent-softened thermoplastic microchannels during chip assembly. Because monoliths may be trimmed prior to final placement, control of their size, shape, and uniformity is greatly improved over in-situ photopolymerization methods. A characteristic trapezoidal profile facilitates rapid insertion and enables complete mechanical anchoring of the monolith periphery, eliminating the need for chemical attachment to the microchannel walls. Off-chip processing allows the parallel preparation of monoliths of differing compositions and surface chemistries in large batches. Multifunctional flow-through arrays of multiple monolith elements are demonstrated using this approach through the creation of a fluorescent immunosensor with integrated controls, and a microfluidic bubble separator comprising a combination of integrated hydrophobic and hydrophilic monolith elements.
منابع مشابه
Integrated on-chip mass spectrometry reaction monitoring in microfluidic devices containing porous polymer monolithic columns.
Chip-based microfluidics enable the seamless integration of different functions into single devices. Here, we present microfluidic chips containing porous polymer monolithic columns as a means to facilitate chemical transformations as well as both downstream chromatographic separation and mass spectrometric analysis. Rapid liquid phase lithography prototyping creates the multifunctional device ...
متن کاملA chitosan coated monolith for nucleic acid capture in a thermoplastic microfluidic chip.
A technique for microfluidic, pH modulated DNA capture and purification using chitosan functionalized glycidyl methacrylate monoliths is presented. Highly porous polymer monoliths are formed and subsequently functionalized off-chip in a batch process before insertion into thermoplastic microchannels prior to solvent bonding, simplifying the overall fabrication process by eliminating the need fo...
متن کاملFlow-through immunosensors using antibody-immobilized polymer monoliths.
High-sensitivity and rapid flow-through immunosensors based on photopolymerized surface-reactive polymer monoliths are investigated. The porous monoliths were synthesized within silica capillaries from glycidyl methacrylate and ethoxylated trimethylolpropane triacrylate precursors, providing a tortuous pore structure with high surface area for the immobilization of antibodies or other biosensin...
متن کاملA 3D porous polymer monolith-based platform integrated in poly(dimethylsiloxane) microchips for immunoassay.
In this work, we demonstrate the immunocapture and on-line fluorescence immunoassay of protein and virus based on porous polymer monoliths (PPM) in microfluidic devices. Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [poly(GMA-co-EGDMA)] monoliths were successfully synthesized in the polydimethylsiloxane (PDMS) microfluidic channels by in situ UV-initiated free radical polymeriza...
متن کاملHigh-pressure on-chip mechanical valves for thermoplastic microfluidic devices.
A facile method enabling the integration of elastomeric valves into rigid thermoplastic microfluidic chips is described. The valves employ discrete plugs of elastomeric polydimethylsiloxane (PDMS) integrated into the thermoplastic substrate and actuated using a threaded stainless steel needle. The fabrication process takes advantage of poly(ethylene glycol) (PEG) as a sacrificial molding materi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Sensors and actuators. B, Chemical
دوره 202 شماره
صفحات -
تاریخ انتشار 2014